Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Mol Struct ; : 134135, 2022 Sep 09.
Article in English | MEDLINE | ID: covidwho-2240471

ABSTRACT

Analogs of pyrimidine and 1,3,4-oxadiazole are two well established class of molecules proven as potent antiviral and anticancer agents in the pharmaceutical industry. We envisioned designing new molecules where these two heterocycles were conjugated with the goal of enhancing biological activity. In this vein, we synthesized a series of novel pyrimidine-1,3,4-oxadiazole conjugated hybrid molecules as potential anticancer and antiviral agents. Herein, we present a new design for 5-fluorocytosine-1,3,4-oxadiazole hybrids (5a-h) connected via a methylene bridge. An efficient synthesis of new derivatives was established, and all compounds were fully characterized by NMR and MS. Eight compounds were evaluated for their cytotoxic activity against fibrosarcoma (HT-1080), breast (MCF-7 and MDA-MB-231), lung carcinoma (A-549), and for their antiviral activity against SARS-CoV-2. Among all compounds tested, the compound 5e showed marked growth inhibition against all cell lines tested, particularly in HT-1080, with IC50 values of 19.56 µM. Meanwhile, all tested compounds showed no anti-SARS-CoV-2 activity, with EC50 >100 µM. The mechanism of cell death was investigated using Annexin V staining, caspase-3/7 activity, and analysis of cell cycle progression. The compound 5e induced apoptosis by the activation of caspase-3/7 and cell-cycle arrest in HT-1080 and A-549 cells at the G2M phase. The molecular docking suggested that the compound 5e activated caspase-3 via the formation of a stable complex protein-ligand.

2.
Pharmaceutics ; 15(1)2022 Dec 29.
Article in English | MEDLINE | ID: covidwho-2230976

ABSTRACT

An efficient and simple approach has been developed for the synthesis of eight dialkyl/aryl[(5-phenyl-1,3,4-oxadiazol-2-ylamino)(aryl)methyl]phosphonates through the Pudovik-type reaction of dialkyl/arylphosphite with imines, obtained from 5-phenyl-1,3,4-oxadiazol-2-amine and aromatic aldehydes, under microwave irradiation. Five of them were hydrolyzed to lead to the corresponding phosphonic acids. Selected synthesized compounds were screened for their in vitro antiviral activity against the avian bronchitis virus (IBV). In the MTT cytotoxicity assay, the dose-response curve showed that all test compounds were safe in the range concentration of 540-1599 µM. The direct contact of novel synthesized compounds with IBV showed that the diethyl[(5-phenyl-1,3,4-oxadiazol-2-ylamino)(4-trifluoromethoxyphenyl)methyl]phosphonate (5f) (at 33 µM) and the [(5-phenyl-1,3,4-oxadiazol-2-ylamino)(4-trifluoromethylphenyl)methyl] phosphonic acid (6a) (at 1.23 µM) strongly inhibited the IBV infectivity, indicating their high virucidal activity. However, virus titers from IBV-infected Vero cells remained unchanged in response to treatment with the lowest non-cytotoxic concentrations of synthesized compounds suggesting their incapacity to inhibit the virus replication inside the host cell. Lack of antiviral activity might presumably be ascribed to their polarity that hampers their diffusion across the lipophilic cytoplasmic membrane. Therefore, the interactions of 5f and 6a were analyzed against the main coronavirus protease, papain-like protease, and nucleocapsid protein by molecular docking methods. Nevertheless, the novel 1,3,4-oxadiazole-based α-aminophosphonic acids and α-amino-phosphonates hold potential for developing new hygienic virucidal products for domestic, chemical, and medical uses.

3.
Chem Biol Drug Des ; 100(6): 1086-1121, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1891512

ABSTRACT

Due to the emergence of drug-resistant microbial strains, different research groups are continuously developing novel drug molecules against already exploited and unexploited targets. 1,3,4-Oxadiazole derivatives exhibited noteworthy antimicrobial activities. The presence of 1,3,4-oxadiazole moiety in antimicrobial agents can modify their polarity and flexibility, which significantly improves biological activities due to various bonded and non-bonded interactions viz. hydrogen bond, steric, electrostatic, and hydrophobic with target sites. The present review elaborates the therapeutic targets and mode of interaction of 1,3,4-oxadiazoles as antimicrobial agents. 1,3,4-oxadiazole derivatives target enoyl reductase (InhA), 14α-demethylase in the mycobacterial cell; GlcN-6-P synthase, thymidylate synthase, peptide deformylase, RNA polymerase, dehydrosqualene synthase in bacterial strains; ergosterol biosynthesis pathway, P450-14α demethylase, protein-N-myristoyltransferase in fungal strains; FtsZ protein, interfere with purine and functional protein synthesis in plant bacteria. The present review also summarizes the effect of different moieties and functional groups on the antimicrobial activity of 1,3,4-oxadiazole derivatives.


Subject(s)
Anti-Infective Agents , Oxadiazoles , Microbial Sensitivity Tests , Oxadiazoles/pharmacology , Oxadiazoles/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Bacteria , Structure-Activity Relationship , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
4.
Bioorg Med Chem ; 67: 116838, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1872946

ABSTRACT

Honokiol, isolated from a traditional Chinese medicine (TCM) Magnolia officinalis, is a biphenolic compound with several biological activities. To improve and broaden its biological activity, herein, two series of honokiol thioethers bearing 1,3,4-oxadiazole moieties were prepared and assessed for their α-glucosidase and SARS-CoV-2 entry inhibitory activities. Among all the honokiol thioethers, compound 7l exhibited the strongest α-glucosidase inhibitory effect with an IC50 value of 18.9 ± 2.3 µM, which was superior to the reference drug acarbose (IC50 = 24.4 ± 0.3 µM). Some interesting results of structure-activity relationships (SARs) have also been discussed. Enzyme kinetic study demonstrated that 7l was a noncompetitive α-glucosidase inhibitor, which was further supported by the results of molecular docking. Moreover, honokiol thioethers 7e, 9a, 9e, and 9r exhibited potent antiviral activity against SARS-CoV-2 pseudovirus entering into HEK-293 T-ACE2h. Especially 9a displayed the strongest inhibitory activity against SARS-CoV-2 pseudovirus entry with an IC50 value of 16.96 ± 2.45 µM, which was lower than the positive control Evans blue (21.98 ± 1.98 µM). Biolayer interferometry (BLI) binding and docking studies suggested that 9a and 9r may effectively block the binding of SARS-CoV-2 to the host ACE2 receptor through dual recognition of SARS-CoV-2 spike RBD and human ACE2. Additionally, the potent honokiol thioethers 7l, 9a, and 9r displayed relatively no cytotoxicity to normal cells (LO2). These findings will provide a theoretical basis for the discovery of honokiol derivatives as potential both α-glucosidase and SARS-CoV-2 entry inhibitors.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Biphenyl Compounds , HEK293 Cells , Humans , Lignans , Molecular Docking Simulation , Oxadiazoles , Protein Binding , Spike Glycoprotein, Coronavirus/chemistry , Sulfides , alpha-Glucosidases/metabolism
5.
Molecules ; 27(9)2022 Apr 22.
Article in English | MEDLINE | ID: covidwho-1847379

ABSTRACT

The bioisosteres of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles are well-known pharmacophores for many medicinally important drugs. Throughout the past 10 years, 1,3,4-oxa-/thiadiazole nuclei have been very attractive to researchers for drug design, synthesis, and the study of their potential activity towards a variety of diseases, including microbial and viral infections, cancer, diabetes, pain, and inflammation. This work is an up-to-date comparative study that identifies the differences between 1,3,4-thiadiazoles and 1,3,4-oxadiazoles concerning their methods of synthesis from different classes of starting compounds under various reaction conditions, as well as their biological activities and structure-activity relationship.


Subject(s)
Thiadiazoles , Drug Design , Oxadiazoles/pharmacology , Structure-Activity Relationship , Thiadiazoles/pharmacology
6.
J Mol Struct ; 1246: 131106, 2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1313340

ABSTRACT

Polyhydroxyphenols and nitrogenous heterocyclics are two of the most powerful active species of molecules in pharmaceutical chemistry, as each of them is renowned for its various bioactivities for humans. One of their outstanding actions is the antiviral activities, which clearly appear if the principal functional entities of both classes meet into one compound. The recent COVID-19 pandemic pushed us to computationally sift and assess our small library of synthetic 2-(3,4,5-trihydroxyphenyl)-1,3,4-oxadiazoles against the main coronaviral protein/enzymatic targets. Surprisingly, few ligands exhibited interesting low binding energies (strong inhibitory affinities) with some SARS-CoV-2 proteins, mainly the pivotal enzyme RNA-dependent RNA polymerase (nCoV-RdRp). One of these compounds was Taroxaz-104 (5,5'-{5,5'-[(1R,2R)-1,2-dihydroxyethane-1,2-diyl]bis(1,3,4-oxadiazole-5,2-diyl)}dibenzene-1,2,3-triol), which presented lower binding free energies of about -10.60 and -9.10 kcal/mol (as compared to the reference agent, GS-443902, which presented about -9.20 and -7.90 kcal/mol) with nCoV-RdRp-RNA and nCoV-RdRp alone, respectively. Extensive molecular modeling examination disclosed the potent Taroxaz-104 inhibition of one of the possible active/allosteric sites of nCoV-RdRp, since Taroxaz-104 molecule interacts with at least seven main amino acids of the presumed pocket/cavity of this nCoV-RdRp active site. The effective repurposing of Taroxaz-104 molecule was attained after the satisfactorily interesting results of the anti-COVID-19 bioassay were secured, since these data demonstrated that Taroxaz-104 showed very efficient anti-COVID-19 actions (anti-SARS-CoV-2 EC50 = 0.42 µM) with specific promising efficacy against the new SARS-CoV-2 strains. Additional research studies for the progress of Taroxaz-104 and other related polyphenolic 2,5-disubstituted-1,3,4-oxadiazole analogs as successful anti-SARS-CoV-2 medications, via, e.g., preclinical/clinical trials, are pressingly required.

7.
Chem Biol Interact ; 343: 109480, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1193249

ABSTRACT

Polyphenolics and 1,3,4-oxadiazoles are two of the most potent bioactive classes of compounds in medicinal chemistry, since both are known for their diverse pharmacological activities in humans. One of their prominent activities is the antimicrobial/antiviral activities, which are much apparent when the key functional structural moieties of both of them meet into the same compounds. The current COVID-19 pandemic motivated us to computationally screen and evaluate our library of previously-synthesized 2-(3,4,5-trihydroxyphenyl)-1,3,4-oxadiazoles against the major SARS-CoV-2 protein targets. Interestingly, few ligands showed promising low binding free energies (potent inhibitory interactions/affinities) with the active sites of some coronaviral-2 enzymes, specially the RNA-dependent RNA polymerase (nCoV-RdRp). One of them was 5,5'-{5,5'-[(1R,2R)-1,2-dihydroxyethane-1,2-diyl]bis(1,3,4-oxadiazole-5,2-diyl)}dibenzene-1,2,3-triol (Taroxaz-104), which showed significantly low binding energies (-10.60 and -9.10 kcal/mol) with nCoV-RdRp-RNA and nCoV-RdRp alone, respectively. These binding energies are even considerably lower than those of remdesivir potent active metabolite GS-443902 (which showed -9.20 and -7.90 kcal/mol with the same targets, respectively). Further computational molecular investigation revealed that Taroxaz-104 molecule strongly inhibits one of the potential active sites of nCoV-RdRp (the one with which GS-443902 molecule mainly interacts), since it interacts with at least seven major active amino acid residues of its predicted pocket. The successful repurposing of Taroxaz-104 has been achieved after the promising results of the anti-COVID-19 biological assay were obtained, as the data showed that Taroxaz-104 exhibited very significant anti-COVID-19 activities (anti-SARS-CoV-2 EC50 = 0.42 µM) with interesting effectiveness against the new strains/variants of SARS-CoV-2. Further investigations for the development of Taroxaz-104 and its coming polyphenolic 2,5-disubstituted-1,3,4-oxadiazole derivatives as anti-COVID-19 drugs, through in vivo bioevaluations and clinical trials research, are urgently needed.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Oxadiazoles/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , Antiviral Agents/metabolism , Catalytic Domain , Chlorocebus aethiops , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Drug Repositioning , Enzyme Inhibitors/metabolism , Microbial Sensitivity Tests , Molecular Docking Simulation , Oxadiazoles/metabolism , Protein Binding , SARS-CoV-2/enzymology , Vero Cells
8.
Mol Divers ; 25(3): 1839-1854, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1002132

ABSTRACT

Designing anticoronavirus disease 2019 (anti-COVID-19) agents is the primary concern of medicinal chemists/drug designers nowadays. Repurposing of known active compounds against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new effective and time-saving trend in anti-COVID-19 drug discovery. Thorough inhibition of the coronaviral-2 proteins (i.e., multitarget inhibition) is a possible powerful favorable strategy for developing effectively potent drugs for COVID-19. In this new research study, I succeeded to repurpose the two antioxidant polyhydroxy-1,3,4-oxadiazole compounds CoViTris2020 and ChloViD2020 as the first multitarget coronaviral protein blockers with extremely higher potencies (reach about 65 and 304 times, for CoViTris2020, and 20 and 93 times, for ChloViD2020, more potent than remdesivir and favipiravir, respectively). These two 2,5-disubstituted-1,3,4-oxadiazoles were computationally studied (through molecular docking in almost all SARS-CoV-2 proteins) and biologically assessed (through a newly established robust in vitro anti-COVID-19 assay) for their anticoronaviral-2 bioactivities. The data obtained from the docking investigation showed that both ligands promisingly exhibited very strong inhibitory binding affinities with almost all docked enzymes (e.g., they displayed extremely lower binding energies of - 12.00 and - 9.60 kcal/mol, respectively, with the SARS-CoV-2 RNA-dependent RNA polymerase "RdRp"). The results of the biological assay revealed that CoViTris2020 and ChloViD2020 significantly displayed very high anti-COVID-19 activities (anti-SARS-CoV-2 EC50 = 0.31 and 1.01 µM, respectively). Further in vivo/clinical studies for the development of CoViTris2020 and ChloViD2020 as anti-COVID-19 medications are required. In brief, the ascent of CoViTris2020 and ChloViD2020 as the two lead members of the novel family of anti-COVID-19 polyphenolic 2,5-disubstituted-1,3,4-oxadiazole derivatives represents a promising hope in COVID-19 therapy. CoViTris2020 and ChloViD2020 inhibit SARS-CoV-2 life cycle with surprising EC50 values of 0.31 and 1.01 µM, respectively. CoViTris2020 strongly inhibits coronaviral-2 RdRp with exceptionally lower inhibitory binding energy of - 12.00 kcal/mol.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drug Repositioning , Oxadiazoles/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Oxadiazoles/chemistry , Oxadiazoles/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL